Degenerate polynomial patches of degree 11 for almostGC 2 interpolation over triangles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degenerate polynomial patches of degree 11 for almost <Emphasis Type="Italic">GC </Emphasis> <Superscript>2 </Superscript> interpolation over triangles

We consider the problem of interpolating scattered data in R 3 by an almost geometrically smooth GC 2 surface, where almost GC 2 means GC 2 except in a finite number of points (the vertices), where the surface is GC 1. A local method is proposed, based on employing so-called degenerate triangular Bernstein-B6zier patches. We give an analysis of quintic patches for GC I and patches of degree ele...

متن کامل

Degenerate polynomial patches of degree 4 and 5 used for geometrically smooth interpolation in 3

The problem of interpolating scattered 3D data by a geometrically smooth surface is considered. A completely local method is proposed, based on employing degenerate triangular Bernstein{B ezier patches. An analysis of these patches is given and some numerical experiments with quartic and quintic patches are presented. Supported by the Netherlands Foundation of Mathematics (SMC) and the Netherla...

متن کامل

Polynomial interpolation and cubature over polygons

We have implemented a Matlab code to compute Discrete Extremal Sets (of Fekete and Leja type) on convex or concave polygons, together with the corresponding interpolatory cubature formulas. The method works by QR and LU factorizations of rectangular Vandermonde matrices on Weakly Admissible Meshes (WAMs) of polygons, constructed by polygon quadrangulation. 2000 AMS subject classification: 65D05...

متن کامل

Bivariate Polynomial Interpolation over Nonrectangular Meshes

In this paper, by means of a new recursive algorithm of non-tensor-producttyped divided differences, bivariate polynomial interpolation schemes are constructed over nonrectangular meshes firstly, which is converted into the study of scattered data interpolation. And the schemes are different as the number of scattered data is odd and even, respectively. Secondly, the corresponding error estimat...

متن کامل

On Sparse Polynomial Interpolation over Finite Fields

We present a Las Vegas algorithm for interpolating a sparse multivariate polynomial over a finite field, represented with a black box. Our algorithm modifies the algorithm of BenOr and Tiwari in 1988 for interpolating polynomials over rings with characteristic zero to characteristic p by doing additional probes. One of the best algorithms for sparse polynomial interpolation over a finite field ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Algorithms

سال: 1993

ISSN: 1017-1398,1572-9265

DOI: 10.1007/bf02113891